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Abstract—  In this paper, a new model for degradation has been 

introduced to cover multiple dynamics for prognostics purposes. 

Firstly, Augmented Global Analytical Redundancy Relations 

(AGARRs) have been introduced to track system’s health 

constantly. Whenever an inconsistency appears, the proposed 

algorithm checks the Mode Change Signature Matrix (MCSM) 

and decides if inconsistency is due to a change in modes or an 

existence of a faulty component. Using Mode Dependent Fault 

Signature Matrix (MD-FSM), a Set of Candidate Faults will be 

generated and fed into PF part to estimate the actual fault and 

parameters of the degradation model. Finally, by applying 

obtained degradation model, Remaining Useful Lifetime (RUL) 

will be estimated. 

 
Index Terms— Hybrid Bond Graph; Prognosis; Particle Filter; 

Remaining Useful Life Tim 

I. INTRODUCTION 

s the complexity of industrial systems increase, fault 

diagnosis and failure prognosis become more and more 

vital since they are critical means to maintain system safety and 

reliability. Such complex systems, can be modeled as hybrid 

systems that consist of interacting event-driven and time-driven 

dynamics. There exist two major issues towards monitoring 

hybrid systems. The first issue is the method used for modeling 

the hybrid system such as hybrid automata [1] and hybrid bond 

graph [2]–[4] . The second issue is simultaneous estimation of 

continuous and discrete states. 

Hybrid Bond Graph (HBG) model is vastly used for model-

based fault diagnosis and failure prognosis in literature. The 

reason is its capability to model incipient faults as well as its 

ability to model hybrid behavior with switched signals. 

Regarding model-based fault diagnosis in HBG, [5] proposed a 

method for offline simultaneous fault diagnosis and mode 

tracking based on parameterization of unknown mode changes.  

Assuming there is only one fault, [6] introduced an online 

method for mode tracking in the presence of fault. However, it 

cannot be used in multiple fault condition.  

Assessing the failure prognosis of hybrid systems and fault 

diagnosis literatures reveals the fact that prognosis is a more 

recent concept. Model based failure prognosis of hybrid 

systems is simply based on formulating mathematical models 

for faulty components and then, applying a proper estimation 

tool such as Particle Filter (PF) which will lead to a complete 

model that describes the faulty parameter evolution in time. 

Using estimated parameters, the Remaining Useful Life (RUL) 

will be extrapolated. RUL can be used for Condition Based 
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Maintenance (CBM) purposes. Having mentioned the above, it 

is worth to note that there have been a great amount of research 

towards failure prognosis recently. Reference [7] had a novel 

look at the prognosis problem in the presence of uncertainty. It 

had very limiting assumptions where the degradation model is 

a priori and the system under consideration have to be modeled 

with continuous form of HBG method called Bond Graph (BG). 

In [8], the authors have considered the prognosis of HBG model 

assuming multiple faults which are non-detectable at fault-

initiating mode and known mode sequence. Reference [9] has 

introduced an integrated approach for prognosis of hybrid 

systems with unknown mode changes in which a Diagnostic 

Hybrid Bond Graph (DHBG) is used to generate a Set of 

Candidate Faults (SCF). Then PF enters and refines the real 

faults and estimates the parameters of fault model for prognosis 

part. While it seems to be a good solution for prognosis of 

hybrid systems, it lacks the speed requirements for online 

implementation due to slow estimation of PF. Therefore it 

exerts significant delay in RUL determination. In addition, the 

model used, is considered to be linear or exponential. This 

assumption has limited the range of systems the algorithm can 

work with. 

This paper is organized as follows: In Section 2, the AGARR-

based diagnosis of HBG models are introduced. In addition, 

DHBG and the algorithm concerning AGARR-based diagnosis 

and prognosis are presented.  Section 3 will be devoted to joint 

state-parameter estimation via PF. RUL prediction is 

introduced in Section 4. In Section 5 simulation results will 

show the performance of the proposed degradation model. 

Finally, Section 6 will conclude the paper. 

I. AGARR-BASED DIAGNOSIS OF HYBRID BOND GRAPH 

A. Hybrid Bond Graph 

As mentioned in introduction, HBG methodology is vastly used 

in fault diagnosis and failure prognosis community. HBG 

provides the opportunity to model several energy domains into 

a single model and to integrate event-driven dynamics into 

time-driven dynamics. DHBG is  HBG equipped with a special 

feature [10]. It has a special causality assignment Sequential 

Causality Assignment Procedure for Hybrid Systems (SCAPH) 

[11]. Using SCAPH, there will be no requirement to reassign 

causality of the HBG model after a mode has been changed. In 

[10], an AGARR is introduced in which mode changes, sensor 

and actuator faults are included. 
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B. AGARR Generation  

Based on Mode-Dependent Fault Signature Matrix (MD-FSM) 

it can be seen that, due to probable off switches, some faults 

might not show any impact on measurements and thus the fault 

cannot be detected. In other words, MD-FSM shows that in a 

given mode an individual combination of residuals may or may 

not be useful for fault diagnosis since they are not isolable. 

Instead, it generates a set of candidates for faults and feed them 

to an estimator for accurate parameter estimation. 

Regarding mode tracking, Mode Change Signature Matrix 

(MCSM) is introduced to show the plausibility of an unknown 

mode change based on residual analysis. If the calculated 

residual shows an inconsistency then our first guess would be a 

change in mode. Comparing residuals with MCSM, it can be 

checked if inconsistency is due to an unknown change in mode 

or a fault has occurred. 

For instance, in Fig. 2. , DHBG model of a two-tank system 

(Fig. 1. ) is presented. AGARRs, MD-FSM and MCSM for 

𝑚𝑜𝑑𝑒 = [1 0 0 1] are derived as follows 

 

 

Fig. 1.  Two-tank system [6] 
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Fig. 2.  DHBG model of a two-tank system [6]. 

TABLE I.  MCSM FOR MODE=[1 0 01] 

 

TABLE II.  MD-FSM  FOR MODE=[1 0 0 1] 

 

 

C. AGARR-Based Mode Tracking and Fault Diagnosis 

For monitoring purposes, a Coherence Vector (CV) is 

calculated as 𝐶𝑉 = [𝐴𝐺𝐴𝑅𝑅1,  𝐴𝐺𝐴𝑅𝑅2] [9] . The proposed 

algorithm works as follows. The CV is constantly under 

supervision and whenever its entries become non-zero then 

firstly the algorithm will check MCSM to see whether this 

inconsistency can be due to an unknown change in modes or 

not. Then it will calculate AGARRs for all modes. If the 

algorithm was able to detect a new mode in which CV is 

consistent, then the system under investigation is healthy and a 

new mode has been identified. On the other hand, if the 

algorithm was not able to find a mode in which CV is 

consistent, there is only one possible explanation for 

inconsistency and that is a fault. Knowing that the modes have 

not changed, algorithm checks all the MD-FSM to see which 

fault might have happened. There is a great possibility that more 

than one fault have the signature of the calculated CV. In this 

situation, the algorithm will send all fault candidates to PF in 

order to estimate the actual values of parameters and find the 

real fault. 

After fault occurrence, the algorithm will not be able to track 

modes. Therefore, a particle filter will be implemented to track 

the system states. At this time, the AGARRs will be calculated 

based on filtered observations while system modes are also 

modeled as parameters and will be estimated via PF. 

In situations where the system is in steady state, the derivation 

of a signal is equal to zero. Hence, if there is a switch at that 

part in AGARR, the derivation is multiplied by mode 

parameters and as a result the change of that mode cannot be 

detected. Here, a false mode tracking has occurred. 

Unfortunately, there is no way to detect the actual mode until a 

known mode change occur. The problem is that this unknown 

and undetectable change of modes can lead to a poor fault 

diagnosis and failure prognosis. To overcome the above-
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mentioned issue, in addition to monitoring the CV in known 

modes, other modes are checked while system is in steady state. 

By doing that, at least we can infer other information about 

system’s mode. As a result, a set of possible modes are 

generated. In this situation, when an undetectable fault occurs 

at the new mode, the algorithm will be aware of possible 

undetectable faults. Since the fault will grow in the new mode, 

after mode has changed to another trackable mode, the fault will 

show itself in residuals like a huge step change. [9] has 

introduced an Auxiliary  Residual (AR) to formulize this 

actions. AR is defined as the derivation of all residuals. 

Therefore, a step like change in AGARR will lead to a spike in 

AR.  

In Fig. 23, the proposed algorithm has been depicted. For the 

sake of simplicity, estimation steps are explained in the next 

sections. 

II. PARTICLE FILTER 

A. Particle Filter 

After obtaining the set of candidates for the faulty parameters, 

the next part of the algorithm will start to jointly estimate the 

state and the parameters. For this purpose, PF [12], [13] which 

is also known as Sequential Monte Carlo (SMC) is used. A 

degradation model should be applied to enable PF to augment 

the state estimation with parameter estimation.  The major issue 

is that an accurate degradation model is not available [14]. In 

our proposed method, a combination of a linear and exponential 

framework is used to cover linear and nonlinear degradation 

behaviors. 
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Fig. 3.  Schematic of Prognosis framework  
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In (2), 𝐹𝑘 is the faulty parameter, 𝐹0 is the parameter before fault 

occurrence, 𝑘𝐹 is the fault occurrence time, 𝑇 is the sampling 

period, 𝑟1 and 𝑟2 are the degradation rates and 𝐹1and 𝐹2 are 

coefficients that describe the faulty parameter dynamics. Since 

there is always a delay between fault occurrence and fault 

detection in (2), 𝑘𝐹 should be changed to 𝑘𝐷 .  

While Kalman Filter (KF) and its extensions, Unscented 

Kalman Filter (UKF) and Extended Kalman Filter (EKF), are  

known for state estimation in linear systems and non-linear 

systems with additive Gaussian noise, PF has the ability to 

handle non-linear systems with non-Gaussian noises. Recently, 

this tool has been used for prognosis of engineering systems 

[15].  

System dynamics can be modeled as: 

1 1( , )

( , )

k k k k

k k k k

x f x v

y h x n

 


 

 

(3) 

 

For each fault candidate, there are three parameters that 

describe the degradation dynamics. Therefore, we augment the 

state vector with these parameters. [𝑟1 , 𝑟2 , 𝐹1, 𝐹2]. In other 

words, for a SCF ∈ ℝ𝑚 , the new augmented state will be of 

order ℝ𝑛+4𝑚 and is defined as follows: 

1 2 1 2[ ]z x F F r r  
(4) 

It is worth to note that, the dynamics of the degradation 

parameters is random walk. For instance, for 𝐹1: 

1 1 1

1k k kF F    
(5) 

where  1

k  is random noise with the pdf shown in Fig. 4.  

 

Fig. 4.  Random Noise used in random walk.  

The augmented model will be like: 
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Preparing the augmented model, it is time to use PF for joint 

state-parameter estimation. PF consists of two steps: 

prediction and update. In prediction, using state model the 

prior pdf of states are obtained. Then, having new 

measurements, PF updates the results. PF uses the idea of 

weighted particles. 

1:

1

( | ) ( )
N

i i

k k k k k

i

p z y w z z


   

 

(7) 

where i

kz  is a set of independent random particles from 

1:( | )k kp z y , 𝑁 is the total number of particles, i

kw is the 

weight of 𝑖th particle at time 𝑘. Since, in practice 
1:( | )k kp z y  

is usually unknown; here, importance sampling is utilized to 

sample 𝑧𝑘
𝑖  from an arbitrary chosen distribution 𝑞(𝑧𝑘

𝑖 |𝑧𝑘−1
𝑖 , 𝑦𝑘) 

called importance-density function. Thus, the weights are 

given by: 

1
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The weights are normalized by: 

1

i
i k
k N l
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(9) 

If the importance density function is chosen as [12] 

1 1( | , ) ( | )i i i i

k k k k kq z z y p z z   
(10) 

Then the update stage will be as follows:  

1 ( | )i i i

k k k kp y z    
(11) 

A common problem with this kind of PF is the degeneracy 

phenomenon, where after a few iterations, all but one particle 

will have negligible weights. It has been shown that the 

variance of the importance weights can only increase over time, 

and thus, it is impossible to avoid the degeneracy phenomenon. 

This degeneracy implies that a large computational effort is 

devoted to updating particles whose contribution to the 

approximation of 𝑝(𝑥𝑘|𝑧1:𝑘) is almost zero. A practical 

approach for estimating the effective sample size �̂�𝑒𝑓𝑓  is 

introduced in [12]. 
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One of the methods by which the effects of degeneracy can be 

reduced is to use resampling whenever a significant 

degeneracy is observed. Here, we have used the systematic 

resampling  [12]. 

I. PARTICLE FILTER-BASED PROGNOSTICS AND RUL 

PREDICTION 

After running the PF, the resulted particles are used to predict 

RUL. Each particle will propagate forward until it reaches its 

End Of Lifetime (EOL). Therefore the m-step prediction of 

each particle will be computed as follows: 

1, 1,
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(13) 

Since the weights of particles in propagation stage remains 

constant at 𝜔𝑘
𝑖 , the expectation could be computed as: 

1

( )
Ns

i i

k m k k m

i

E F F 



  

 

(14) 

If we define a failure threshold𝐹𝑡ℎ, the EOL of each particle 

can be obtained by solving the following equation: 

1, 1,

2, 2,

exp( ( ) )

( ( ) )

D D

D D D

i i i

th k k EOL D

i i i

k k k EOL D

F F r k T k T

F F r k T k T

    

  

 

(15

) 

 

The pdf of 𝑇𝐸𝑂𝐿  shows the statistical distribution of RUL. In 

addition the expected value of RUL can be calculated by: 

 
1

Ns
i i

k EOL

i

E RUL T


  

 

(16) 

 

II. SIMULATION 

In this section, another example of DHBG system, Fig. 5. Fig. 

6. is adopted from [9] to show the performance of  the 

algorithm. 

 

Fig. 5.  Electric Circuit with hybrid dynamic[9] 

 

Fig. 6.  DHBG of Electric Circuit[9] 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

je
e.

m
od

ar
es

.a
c.

ir
 o

n 
20

24
-0

5-
09

 ]
 

                               4 / 6

https://mjee.modares.ac.ir/article-17-5673-en.html


MODARES JOURNAL OF ELECTRICAL ENGINEERING, VOL 15, NO 2 SUMMER 2015 25 

AGARRs can be calculated as follows: 
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The circuit in Fig. 6. has two switches. Hence, there are four 

different modes each one represented with an array with 

binary entries. For instance, [0 1] stands for the mode in 

which first switch is open and the second switch is closed. 

The nominal parameters are:  

An exponential incipient fault at 1020 step has been inserted to 

𝐶2 when the system is at 𝑚𝑜𝑑𝑒 = [0 0]to show the performance 

of the algorithm. The second residual will act as Fig. 7. , other 

residuals are below the threshold. Then CV will change to =
[0 1 0] . MCSM (TABLE III. ) will be used to decide whether 

the inconsistency is due to a change in mode or not. Since CV 

is inconsistent with MCSM, the change should be due to a fault 

in parameters. 

TABLE III.  MCSM 

 

Now based on MD-FSM in = [0 0] TABLE IV.  , a set of 

candidate faults have been identified by the algorithm 

including 𝐶2,  𝛽𝐷𝑒1, 𝛽𝐷𝑒2, 𝑅3. PF has to refine the correct faults 

and also estimate degradation parameters. Therefore an 

augmented model is created with 19 state. 

 

Fig. 7.  Second AGARR 

It is worth to note that, noise is a challenging problem here since 

there is derivatives in AGARR generations which intrinsically 

boosts the noise. To handle the problem we used a low-pass 

filter to elminate the derivation of a noisy siganl.  

The value of the threshold is chosen by observing residual 

responses under a system-healthy condition. It is worth noting 

that threshold should be carefully set to avoid false alarm. To 

deal with measurement noise a low-pass filter is adopted. 

Fig. 8. illustrates the estimated states of the system at fault 

occurrence. Estimated parameters of degradation model for 

each candidate fault were used to find the estimated value of 

estimated fault. If the estimated value was near the nominal 

value, then we can infer that it was not the true fault and vice 

versa. The real fault’s corresponding particles are used to 

calculate RUL . Fig. 9. shows the RUL distribution. 

TABLE IV.  MD-FSM ([0 0]) 

 

 

Fig. 8.  Estimated States 
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Fig. 9.  Estimated RUL Distribution  

III. CONCLUSION 

In this paper after introducing AGARR-based fault diagnosis 

and mode tracking, we proposed a new model for degradation 

behavior for prognosis. Since the proposed model has the 

ability to handle linear and exponential dynamics, it could be 

beneficial for prognostic purposes where a flexible dynamic is 

needed. The model and PF were able to estimate true fault 

correctly and extract RUL in an acceptable manner. Our model 

however, has a negative side. In our approach, the uncertainty 

in model was not taken into account which has a significant 

effect on results. In our future works, we will deal with 

uncertainty in model to increase the performance of the 

algorithm. 
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